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[1] In this study we report the development of a time dependency of global dust source
and its impact on dust simulation in the Goddard Chemistry Aerosol Radiation and
Transport (GOCART) model. We determine the surface bareness using the 8 km
normalized difference vegetation index (NDVI) observed from the advanced very high
resolution radiometer satellite. The results are used to analyze the temporal variations of
surface bareness in 22 global dust source regions. One half of these regions can be
considered permanent dust source regions where NDVI is always less than 0.15, while the
other half shows substantial seasonality of NDVI. This NDVI-based surface bareness map
is then used, along with the soil and topographic characteristics, to construct a dynamic
dust source function for simulating dust emissions with the GOCART model. We divide
the 22 dust source regions into three groups of (I) permanent desert, (II) seasonally
changing bareness that regulates dust emissions, and (III) seasonally changing bareness
that has little effect on dust emission. Compared with the GOCART results with the
previously employed static dust source function, the simulation with the new dynamic
source function shows significant improvements in category II regions. Even though the
global improvement of the aerosol optical depth (AOD) is rather small when compared
with satellite and ground-based remote sensing observations, we found a clear and
significant effect of the new dust source on seasonal variation of dust emission and dust
optical depth near the source regions. Globally, we have found that the permanent bare land
contributes to 88% of the total dust emission, whereas the grassland and cultivated crops
land contribute to about 12%. Our results suggest the potential of using NDVI over a
vegetated area to link the dust emission with land cover and land use change for air quality
and climate change studies.
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1. Introduction

[2] Dust is one of the most prominent aerosol types in the
atmosphere, which plays an important role in the Earth

climate system [Forster et al., 2007]. Numerous studies
have shown the importance of dust to affect the Earth’s
radiation budget, atmospheric dynamics, atmospheric
chemistry, air quality, and ocean biogeochemistry over wide
ranges of spatial and temporal scales [Husar et al., 2001;
Haywood et al., 2005; Jickells et al., 2005].
[3] Soil particle mobilization into the atmosphere is driven

mainly by the winds. In the numerical models, such process
is often parameterized as a function of the friction wind (u*)
or near-surface wind speed [e.g., Tegen and Fung, 1995;
Ginoux et al., 2001; Zender et al., 2003; Textor et al., 2006;
Huneeus et al., 2011]. Other factors affecting dust
mobilization include soil moisture (or surface wetness) and
vegetation cover (surface roughness), as dust is usually uplifted
over dry surfaces with little vegetation coverage. The variations
of these factors are very different in terms of time scales, for ex-
ample winds vary subhourly, soil moisture daily to seasonally,
and surface bareness seasonally to interannually. While all
models explicitly take into account the change of wind speed
and soil moisture in calculating dust emissions, they commonly
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employ a “climatological” land cover data for identifying dust
source locations and neglect the time variation of surface
bareness [e.g., Ginoux et al., 2001; Huneeus et al., 2011].
Although such an approach is adequate over permanent desert
locations because of little vegetation coverage there, the static
dust source does not reflect the dynamic land cover changes
over other areas and could cause significant error in estimating
dust emissions in some seasons.
[4] In this study, we investigate the effects of temporal vari-

ation of surface bareness on seasonal cycles of dust emissions
and atmospheric loading. We use the satellite data from
normalized difference vegetation index (NDVI) from the ad-
vanced very high resolution radiometer (AVHRR) to construct
a dynamic dust source function map at 15 day time resolution,
and apply this source function to the dust simulation with
the Goddard Chemistry Aerosol Radiation and Transport
(GOCART) model. Previous studies have shown that there is
a statistically significant relationship between NDVI and dust
loading in source regions [Zender and Kwon, 2005] and
time-changing vegetation coverage data can significantly
improve dust emission process [Tegen et al., 2002; Fairlie
et al., 2007; Webb and McGowan, 2009; Shannon and Lunt,
2011]. Some regional models have used the NDVI information
to produce a continuous weighting function for dust emission
[Park et al., 2010]. Our study here provides an analysis of such
effects on dust regions over the globe from 2000 to 2007, and
then compares this dynamic source with the static source func-
tion in previous GOCART model simulations to assess the
significance.
[5] In section 2, we will describe how our time resolved

surface bareness map is constructed from the satellite
observed NDVI. We will present the relationship among
NDVI, the surface bareness, and dust source function in vari-
ous source regions. We will investigate the time-dependent
dust source function in section 3 and its effect to the dust emis-
sion and distribution using the GOCART model and compare
the simulated aerosol optical depth with satellite and surface
measurement data in section 4. Discussion and summary are
given in sections 5 and 6, respectively.

2. Method

2.1. General

[6] Dust uplifting to the atmosphere occurs mainly by
sand blasting or soil bombardment, which is parameterized
in GOCART assuming that the vertical particle flux is
proportional to the horizontal wind flux [Ginoux et al.,
2001]. The emission parameterization requires the knowl-
edge of the 10m wind speed, the threshold velocity of wind
erosion, and the surface condition for each dust size class.
Dust emission flux Ep (mgm�2 s�1) for a size group p is
expressed as

Ep ¼ C � S � sp � u210 � u10 � utð Þ; if u10 > ut (1)

where C is a dimensional factor (1 mg s2 m�5), S is the dust
source function or probability of dust uplifting with a value
between 0 and 1, sp is the fraction of size group p within the
soil [Tegen and Fung, 1995], u10 is the 10m wind speed (m
s�1), and ut is the threshold velocity of wind erosion as a
function of dust density, particle diameter, and surface wet-
ness to account for the bonding effect between water and

particles [Ginoux et al., 2001, 2004]. Two soil types are con-
sidered for erosion: clay (particle radius less than 1 mm) and
silt (particle radius greater than 1 mm and less than 10 mm),
[7] The dust source function S is determined by the sur-

face bareness (B) and topographical depression features
(H). Here, H is calculated from the elevation of the grid cell
relative to the elevation of the surrounding areas [Ginoux
et al., 2001] (equation (2)). This method is based on the
consideration that dust sediments from surface erosion are
accumulated in valleys and depressions.

H ¼ zmax � zi
zmax � zmin

� �5

(2)

where H is the probability to have accumulated sediments
in a grid cell i of altitude zi. Here zmax and zmin are the
maximum and minimum elevations of 10��10� topogra-
phy. Fifth-order power is applied to increase the topo-
graphic contrast.
[8] In previous GOCART simulations [e.g., Ginoux et al.,

2001, 2004; Chin et al., 2002, 2009], the surface bareness B
was determined based on the 1987 annual averaged satellite
land cover data from AVHRR [DeFries and Townshend,
1994], which does not change with time. Although such
constructed dust source collocates with the satellite observed
dust “hot spots” [e.g., Ginoux et al., 2001; Prospero et al.,
2002], it is a static function (denoted as SStatic hereafter) that
neither reflects the land cover change nor considers seasonal
variations of soil bareness. This study therefore focuses on
improving the seasonal and interannual variation of dust
source function, as described in the next sections.

2.2. Time-Dependent Surface Bareness

[9] In this study, we utilized the AVHRR NDVI
composite from the NASA Global Inventory Monitoring
and Modeling Systems (GIMMS) [Tucker et al., 2005; Brown
et al., 2006]. We used the AVHRR sensor instead of the data
from MODIS because of its longer record. AVHRR data is
available from 1981 to 2008, and will soon be extended to
2012. Although here we use the NDVI only during eight
years in the MODIS period, we develop this method so that
the model can be run over the longer time period.
[10] The GIMMS data have been corrected to reduce the

influence of water vapor due to the wide spectral bands in
AVHRR [Tucker et al., 2005]. We only used quality assured
data to reduce possible noise from unexpected surface condi-
tions. Satellite drift correction has been applied to this data
set to further remove artifacts due to orbital drift and changes
in the Sun-target-sensor geometry [Pinzon et al., 2005].
[11] NDVI is calculated from the visible (VIS) and near-

infrared (NIR) light reflected by vegetation [Tucker, 1979]:

NDVI ¼ NIR� VISð Þ= NIRþ VISð Þ (3)

NDVI is usually very low when the ground is bare and gets
higher as ground is covered by more vegetation. Here, we
choose a threshold NDVI value of 0.15, below which the
surface is considered to be bare. This threshold will vary
depending on the data set used due to each sensor’s unique
design and sensitivity to vegetation [Brown et al., 2006].
[12] Using the 8 km spatial resolution AVHRR NDVI data

(NDVI8km) and the bareness threshold NDVI value, we have
constructed a global surface bareness (B) map in 1��1�
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spatial resolution from 1981 to 2008 with the same time res-
olution as the AVHRR NDVI data at two times per month.
In each 1��1� grid cell, B is calculated as the ratio of the
number of NDVI8km pixels that are below 0.15 (i.e.,
N<0.15) to the total number of NDVI8km pixels within the
grid cell (i.e., Ntotal; equation (4)). In reality, different bare
surface should have different reflectance, and ideally the
threshold NDVI should be variable determined by the char-
acteristics of the bare surface, such as soil composition or
surface roughness. However, currently there are no available
best estimates on the spatially varying threshold NDVI. This
value was chosen based on several observations over various
desert surfaces that is around 0.15 [Tucker et al., 1991;
Peters and Eve, 1995; Sobrino and Raissouni, 2000;
Bradley and Mustard, 2005].

B ¼ N<0:15

Ntotal
(4)

[13] The 8 year mean global distributions of NDVI and B
are shown for January and July (Figure 1). High NDVI
appears in densely vegetated areas such as in Amazon and
South Africa, and low NDVI appears in desert regions such
as Sahara and Middle East. The constructed B map shows
little seasonal variability in desert belt regions, i.e., Saharan,
Arabian, and China Deserts, but in other dry regions it
reveals stronger seasonal changes.

3. Dust Source Function

3.1. Seasonal Variations

[14] The new dust source function is constructed using the
aforementioned time resolved soil bareness and topographic
features to identify the probability of location and time of
dust uplifting. The 10min topography map from the Navy
Fleet Numerical Oceanography Center, Monterey [Prospero
et al., 2002] is used to construct the H in equation (2). In
addition, we utilize other data to further mask the nondust
areas, including the land cover from AVHRR [Hansen
et al., 2000] to mask the forest area and the soil depth data
from the Food and Agriculture Organization of the United
Nations to screen out the nonsoil bare areas (i.e., soil depth
less than 10 cm) (http://www.fao.org/nr/land/soils/en/). We
also exclude the bare surfaces covered by snow or with tem-
perature below 260�K as dust source locations (Figure 2).
[15] Figures 3a–c shows the new dynamic source function

(Sdynamic) in January and July averaged from 2000 to 2007
and the July-to-January ratio. While there is little seasonal
variation over the Saharan, Arabian, and Taklimakan
deserts, Sdynamic varies with a magnitude often greater than
a factor of 2 in many other source regions such as Sahel,
Somalia, Thar desert, Western US, Chile, Australia, and
South Africa (Figure 3c). For comparison, Figures 3d–f
shows the previously used static source function (Sstatic,
Figure 3d) and the ratio of Sdynamic to Sstatic for January

Figure 1. Mean AVHRR NDVI and bareness (%) map for January and July averaged from 1981 to 2007.
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(Figure 3e) and July (Figure 3f). Even though qualitatively
both Sdynamic and Sstatic show similar high values in the
Afro-Asian dust belt region and moderate to low values in
other source regions (Figures 3a, b, and d). Sdynamic is often
different from Sstatic by a factor of 2 or more in many loca-
tions, such as Gobi desert, Karakum (east of Caspian Sea),
Australia, and South America where Sdynamic is higher and
some part of Saharan desert, Chotts, and Southern Gobi des-
ert where Sdynamic is lower (Figures 3d and f).

3.2. Relationship Between Dust Source Function,
Surface Bareness, and Topographic Features

[16] Locations of major global dust source regions have
been identified in previous studies using different criteria.
For example, Prospero et al. [2002] used the TOMS aerosol
index data and Koven and Fung [2008] used various
erodibility indices including topography, inverse eleva-
tion, NDVI, surface roughness, and hydrologic state to
recognize major source locations over the globe. In this
study, we have selected 22 dust source regions based on
both Prospero et al. [2002] and Koven and Fung [2008]
to analyze their seasonal variations. Geographical informa-
tion of each region and its location are given in Table 1
and Figure 4. Note that our selected domain areas are
not exactly the same as those in the previous studies since
we included the NDVI data in determining desert emission
area. The NDVI map of the selected dust source regions
shows the heterogeneous land cover in the source region

and its seasonality (Figure 5). Some are “permanent des-
ert” (i.e., NDVI is less than 0.15 throughout year), such
as Sahara, Arabia, Taklimakan, and Gobi deserts in group
I. The mean NDVI in these deserts is around 0.1, far
below our threshold value of 0.15. Other deserts have
more seasonally variable NDVI (i.e., NDVI< 0.15 only
during dry season), such as Sahel, Australia, Chinese
Loess, South and North America, South Africa in groups
II and III, where the driest part of those region is almost
always lower than 0.15 but the surrounding area has
strong seasonal variability.
[17] The source function–related parameters, emission,

and aerosol optical depth of the considered source area are
summarized in Table 2. As we indicated earlier, the source
function S represents the probability of dust uplift, which
depends on the degree of both bareness (B) and surface
depressions (H). There is a wide the range of B and H,
depending on source regions. We divide the 22 source
regions into three groups according to the strength of B
and H. Group I consists of permanent deserts, such as
Bodélé and Arabian desert (Chotts), with high values of H
and low variability of B. Almost half of the analyzed source
regions fall into group I. The remaining regions have differ-
ent degree of seasonal variation of B. For those regions, we
select the more active ones with high degree of H (>0.1) in
group II, such as Thar, Lake Eyre, and Somalia, and less
active ones with low H (<0.1) in group III, such as Namibia,
Mexico, and Salt Lake.

Figure 2. Global distribution of topographical depression (H, dimensionless), soil depth (cm), and land
cover classification.
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[18] We examine the relationship between S, B, and H for
selected dust regions and illustrate it in Figure 6. The most
distinctive characteristics in group I is the high percentage
of bareness (>0.88) throughout the year. In group I, both
dynamic and static bareness are constantly high throughout
the year. Topography depression H that affects to the
emission efficiency varies by deserts, i.e., 0.4 in Bodélé
and 0.2 in Gobi. Bareness in groups II and III varies signif-
icantly from below 0.2 to above 0.9 depending on seasons,
with an annual mean about 0.56. However, the behavior of
Sdynamic between group II and III is quite different. The Sdy-
namic in group II varies significantly with time; the differ-
ences between the maximum and minimum values are as
large as 0.4, 0.3, and 0.1 in Thar Desert, Lake Eyre, and
Somalia Desert, respectively. The relatively large H
(between 0.2 and 0.8) combined with the time-varying B

results a substantial seasonality of the Sdynamic in group II.
In contrast, the seasonal change and the values of Sdynamic
in group III are much less than those in group II despite
the large seasonal change of B, due to the low degree of H
in group III that damper the magnitude of seasonal variations
and determine the low values of Sdynamic.

4. Simulation of Dust Aerosol With Dynamic
Source Functions

[19] With the new Sdynamic, we use the GOCART model to
simulate dust emissions and atmospheric distributions.
GOCART is driven by the assimilated meteorological
fields from the Goddard Earth Observing System Data
Assimilation System (GEOS DAS) [Ginoux et al., 2001; Chin
et al., 2002, 2009; Bloom et al., 2005]. In the GOCART

Figure 3. Distribution of static and dynamic source function and the differences between the two.
Dynamic source function is averaged for January and July from 2000 to 2007.
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model, aerosol advection is computed by a flux form semi-
Lagrangian method that is a second-order closure scheme
for the boundary layer turbulent mixing and the moist con-
vection is based on the cloud mass flux fields. Dry deposi-
tion includes gravitational settling as a function of aerosol
particle size and air viscosity and surface deposition as a
function of surface type and meteorological conditions
[Fuchs, 1964; Wesely, 1989]. Wet deposition accounts for
the scavenging of soluble species in convective updrafts
and rainout/washout in large-scale precipitation [Giorgi
and Chameides, 1986; Balkanski et al., 1993]. Radiative
calculation is based on OPAC data set [Hess et al., 1998].

Dust particle size distribution is described by eight size bins
is in the size range from 0.1 to 10 mm in radius to take into
account size-dependent physical and optical processes.
The eight size bins that describe size range are 0.1–0.18,
0.18–0.3, 0.3–0.6, 0.6–1, 1–1.8, 1.8–3, 3–6, and 6–10 mm
[Chin et al., 2009]. The horizontal resolution of the model
is 1� latitude by 1.25� longitude with 30 vertical sigma
layers up to 10 hPa. In the present study two dust simula-
tions are conducted from January 2000 to December 2007,
where the first simulation is with the static source function
[Ginoux et al., 2001] and the other with the new dynamic
source function.

Table 1. Name and Location of Dust Source Regions

Number Name Boundary Groupa

1 Karakum 54.0�E–65.0�E, 37.0�N–42.0�N I
2 Argentina 70.0�W–67.0�W, 33.0�S–30.0�S I
3 Bodel 10.0�E–20.0�E, 15.0�N–20.0�N I
4 Chile 71.0�W–67.0�W, 28.0�S–19.0�S I
5 Chotts 5.0�E–10.0�E, 32.0�N–35.0�N I
6 Gobi 100.0�E–105.0�E, 42.5�N–45.0�N I
7 Nile 29.0�E–34.0�E, 28.0�N–31.0�N I
8 Oman 52.5�E–57.5�E, 18.0�N–21.0�N I
9 Saudi Arabia 47.5�E–52.5�E, 20.0�N–25.0�N I
10 Tarim Basin 75.0�E–90.0�E, 35.0�N–40.0�N I
11 Tigris 42.5�E–57.5�E, 28.0�N–32.0�N II
12 China Loess 103.0�E–110.0�E, 36.5�N–39.0�N II
13 Lake Eyre 136.0�E–140.0�E, 30.0�S–25.0�S II
14 Mojave 116.0�W–113.0�W, 32.0�N–35.0�N II
15 Patagonia 72.0�W–68.0�W, 51.0�S–43.0�S II
16 Sahel 0.0�E–20.0�E, 13.0�N–16.0�N II
17 Somalia 45.0�E–51.0�E, 8.0�N–11.5�N II
18 Thar 70.0�E–74.0�E, 25.0�N–29.0�N II
19 Mexico 108.0�W–103.0�W, 29.0�N–33.0�N III
20 Namibia 15.0�E–19.0�E, 29.0�S–23.0�S III
21 Salt Lake 115.0�W–112.0�W, 39.0�N–42.0�N III
22 Botswana 24.0�E–27.0�E, 22.0�S–19.0�S III

aType of desert groups defined in this study.

Figure 4. Location of the 22 dust source regions selected for the analysis. Regions for the in-depth
analysis are in red boxes, and black dots indicate the location of AERONET sites.
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Figure 5. Mean NDVI map in various source regions in January and July, averaged from 2000 to 2007.
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Figure 6. Time series of monthly mean dynamic (red) and static (blue) source functions (S), topographic depression
(H, black), and surface bareness (B, purple). Numbers in each panel are monthly mean of each variable.

Table 2. Mean Variables of Regional Average NDVI, Surface Bareness (B), Degree of Topographic Depression (H), Source Function (S),
10m Wind Speed (u10), Annual Emission (EMI), and AOD Over 22 Desert Regions Averaged From January 2000 to December 2007a

Group Name NDVI B H S u10 EMI (mg m-2 d-1) Modeled AOD Satellite AOD

I Karakum 0.08 76.15 0.68 0.46 (0.13) 4.16 529.4 (132.4) 0.31 (0.16) 0.19 [0.25]
I Argentina 0.08 41.71 0.36 0.06 (0.03) 4.82 139.2 (65.9) 0.02 (0.02) 0.09 [0.15]
I Bodel 0.01 99.71 0.43 0.35 (0.42) 5.49 1035.3 (1067.3) 0.49 (0.55) 0.49 [0.54]
I Chile 0.01 84.12 0.09 0.06 (0.08) 4.62 119.6 (93.2) 0.02 (0.02) 0.11 [0.17]
I Chotts 0.06 56.44 0.32 0.20 (0.30) 4.50 369.8 (443.3) 0.30 (0.31) 0.27 [0.32]
I Gobi 0.06 88.44 0.21 0.17 (0.07) 4.30 233.0 (167.0) 0.13 (0.13) 0.15 [0.12]
I Nile 0.05 66.23 0.41 0.32 (0.28) 4.56 544.4 (381.3) 0.25 (0.21) 0.23 [0.31]
I Oman 0.01 94.94 0.15 0.13 (0.12) 4.66 204.5 (155.9) 0.25 (0.20) 0.37 [0.26]
I Saudi Arabia 0.01 89.49 0.29 0.26 (0.26) 4.32 373.0 (305.6) 0.33 (0.27) 0.43 [0.31]
I Tarim Basin 0.04 88.21 0.17 0.13 (0.16) 4.78 290.6 (881.3) 0.17 (0.35) — [0.39]
II Tigris 0.04 75.88 0.32 0.23 (0.15) 4.45 290.5 (209.6) 0.28 (0.22) 0.25 [0.27]
II China Loess 0.16 65.51 0.11 0.06 (0.16) 4.13 94.9 (385.7) 0.14 (0.20) 0.24 [0.23]
II Lake Eyre 0.07 55.69 0.38 0.21 (0.14) 4.31 282.4 (194.5) 0.04 (0.03) 0.11 [0.15]
II Mojave 0.06 47.73 0.36 0.17 (0.08) 3.87 157.5 (77.3) 0.05 (0.04) 0.11 [0.30]
II Patagonia 0.14 43.00 0.24 0.08 (0.04) 6.16 289.1 (203.3) 0.01 (0.01) 0.06 [0.19]
II Sahel 0.08 73.46 0.40 0.21 (0.20) 4.74 556.6 (427.3) 0.54 (0.55) 0.47 [0.62]
II Somalia 0.02 48.45 0.24 0.14 (0.06) 6.48 758.3 (297.1) 0.16 (0.08) 0.27 [0.31]
II Thar 0.17 37.48 0.77 0.37 (0.25) 3.55 379.0 (200.5) 0.22 (0.16) 0.39 [0.59]
III Mexico 0.11 21.58 0.08 0.01 (0.01) 4.21 14.1 (10.2) 0.02 (0.02) 0.13 [0.17]
III Namibia 0.06 52.95 0.09 0.08 (0.07) 4.61 123.6 (137.7) 0.02 (0.02) 0.12 [0.15]
III Salt Lake 0.33 27.86 0.03 0.01 (0.00) 4.18 5.7 (5.0) 0.03 (0.03) 0.12 [0.16]
III Botswana 0.30 4.10 0.10 0.01 (0.00) 3.83 7.1 (0.0) 0.00 (0.00) 0.17 [0.16]

aModel-calculated emission and AOD by static source function are shown in parentheses. Satellite AOD from MISR and MODIS Deep Blue (in brackets)
are also listed.
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4.1. Dust Emissions With Dynamic and Static
Source Functions

[20] The monthly mean dust emission using both Sstatic
and Sdynamic are plotted for January and July averaged from

2000 to 2007 (Figure 7). Even though most active dust
source appears in the dust belt, other hot spots appear to
produce significant amount of dust in both static and dynamic
source function simulations. Dust emission shows a wide

Figure 7. Monthly mean emission for January and July using a (a) dynamic source function and
(b) static source function. (c) Absolute and (d) relative difference in emission between dynamic and static
source maps. All plots are averaged in the period from 2000 to 2007.
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range from 100 to 5000mgm-2 d-1 with strong seasonality in
most emission regions. The effect of Sdynamic over Sstatic is
more obvious with the absolute and relative differences
between two methods (Figures 7c and d). The absolute differ-
ence of emissions is strongest in dust belt throughout year in
the range between -500 and +500 (gm-2 d-1). The Sdynamic
appears to produce a factor of two more dust emission than
the Sstatic in several source regions including North America,
Chile, central Asia (Karakum Desert), and Sahel. Dust
emission is reduced in some source areas such as Patagonia
and China. The global total dust emission is 3245 Tg/yr with
Sdynamic and 2985 Tg/yr with Sstatic, resulting 8.7% higher
emission in the dynamic source function. The emission in
each region is summarized in Table 2.
[21] As equation (1) shows, the 10m wind speed (u10) is

the driving force for dust emission that is proportional to the
third power of u10. Other parameters, including the surface
bareness B, exert modulating effects. We compared dust
emissions as a function of u10 with Sdynamic and Sstatic in
nine selected source regions (three for each group) in
Figure 8. Since same meteorological fields are used for the
simulation, the range of u10 is the same in two simulations.
As expected, dust emissions from both source functions are
well correlated with u10. The largest difference in emission
amount between simulations with Sdynamic and Sstatic appears
in group II (Figure 8, middle), where the emission with Sdy-
namic is up to a factor of 2 higher than that with Sstatic.

The difference of dust emission in group I regions (Figure 8,
top) varies with locations; for example, the emissions are
nearly identical in Bodélé but the difference is about 50%
in Gobi and 20% in Saudi Arabian deserts (emission being
higher with Sdynamic). In comparison, regions in group III
(Figure 8, bottom) are generally less active with lower
emissions rates and there are only marginal differences be-
tween the simulations with two different source functions.
[22] The major difference between Sdynamic and Sstatic is

that Sstatic only considers the dust emissions from the bare
ground but Sdynamic includes dust emissions from other areas
that can be covered by vegetation during growing seasons.
To estimate the dust emission from both bare and vegetated
land cover areas with Sdynamic, we grouped 12 land cover
classes in Figure 2 into two categories of bare land (bare
ground and shrubs and bare ground in Figure 2) and vege-
tated land (the remaining land types). On a global annual
average between 2000 and 2007, 88% (2861 Tg/yr) of dust
are emitted from the bare land, and 12% (384 Tg/yr) from
vegetated land (Figure 9). Three land types of wooded grass-
land, grassland, and cultivated crop land contribute to 0.2%,
10.2%, and 1.0% of dust emission, respectively.

4.2. Comparisons of Dust AOD With Observations

[23] We compare model simulated AOD with observa-
tions from satellite sensors of the Multiangle Imaging
Spectroradiometer (MISR) and the Moderate Resolution

Figure 8. Relationships between emission and u10. Each dot is monthly mean values over the domain.
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Imaging Spectroradiometer (MODIS), and from ground-
based Sun photometer measurements of the Aerosol Robotic
Network (AERONET). AERONET [Holben et al., 1998]
was established in the 1990s and currently consists of more
than 200 sites over the globe. It provides direct measurement
of AOD at multiple wavelengths from near UV to near IR
during daytime with an uncertainty of 0.01–0.02 at the visi-
ble wavelength. The MODIS instruments aboard the NASA
Earth Observing System (EOS) Terra and Aqua satellites
provide aerosol related parameters for the entire globe since
2000 and 2002, respectively. Along with the standard
MODIS AOD product over relatively dark surfaces of land
and ocean [Remer et al., 2005; Levy et al., 2010], the Deep
Blue algorithm applied to Aqua retrieves AOD at 550 nm
over bright land surfaces such as desert [Hsu et al., 2004].
The Deep Blue algorithm uses two blue channels of
0.412mm and 0.470mm, where surface reflectance is
relatively small and their uncertainty is in the range of
25–30% when it is compared with AERONET sites in
Asian desert [Hsu et al., 2006]. MISR is a multiangle mul-
tispectral instrument onboard Terra [Kahn et al., 1998,

2001]. MISR validation study shows that the uncertainty
of retrieved AOD is within �0.05 or 20% compared to
AERONET [Kahn et al., 2005]. Another comparison study
with AERONET in desert regions estimates that the esti-
mated uncertainty of MISR AOD is 0.05–0.08 in visible
wavelength [Martonchik et al., 2004]. We use the Level 2
(version 2) monthly average data between 2000 and 2007
at sites over the major dust source regions. In this study,
the satellite data are gridded to 1��1� to be consistent with
the model spatial resolution. All the comparisons are done
with the AOD at 550 nm.
[24] Figure 10 compares the AOD from MISR (first

column) and MODIS Deep Blue (second column) with two
model simulations using Sdynamic (third column) and Sstatic
(fourth column) for July which is an active dust month. Here
we include all aerosols simulated with GOCART (sulfate,
black carbon, organic matter, dust, and sea salt) for more
appropriate comparisons to total AOD from satellite. How-
ever, the differences of AOD in these two model simulations
(third and fourth columns in Figure 10) are entirely due to
the dust AOD simulated with different source functions.
Although the seasonal variation patterns and the geographi-
cal distributions are similar, there are as much as factor of 2
differences in AOD between MISR and MODIS Deep Blue,
depending on region and season. For example, MODIS
Deep Blue AOD is 10% (Somalia) to factor of 3 (Thar
desert) higher than MISR in July. The modeled AOD with
the dynamic source function is from 40% (Thar desert and
Tigris) to twice (Somalia and Karakum Desert) larger than
the static source function simulation. Since the AOD from
the static source function in general underestimates than
the observed AOD, the increase of AOD in the dynamic
source function indicates the improved AOD by the new
source function.
[25] Time series of the monthly mean total AOD from

the model simulations are plotted along with the satellite
observed AOD from MISR and MODIS Deep Blue in 9
selected regions (Figure 11). During the peak season (July),
simulated AOD from Sdynamic and Sstatic are similar in
Bodélé and Gobi but are significantly different as much as
factor of 2 in other regions, while the difference in January
is less than 10%. The correlation coefficients between
modeled and MISR AODs are 0.71–0.90 in groups I and
II, but the range is 0.46–0.68 in group III. There is no
significant change between model results with Sdynmic and
Sstatic in group I, because these are permanent deserts with
similar emission rates. In group II, the dynamic source
function simulation enhances AOD as expected from the
emission comparison and the dynamic source function run
is better agreed with satellite in peak AOD season. The
dynamic source function shows better statistical perfor-
mance than the static source function, i.e., the correlation
coefficient is increased about 0.1 and the mean bias is
reduced 0.1–0.3. Sahel region has strong seasonality in
bareness and falls in group II. It has high source function
but the lower emission due to the weaker wind speed which
is similar to the previous study by Ginoux et al. [2010]. In
group III, dust AOD from two model simulations is much
lower than satellite observation indicating that model has
large discrepancies with observations in the region. Also
it is worth noting that the relationship between u10 and
dust AOD is not as high as the one between u10 and dust

Figure 9. Dust emission from (top) bare land and (bottom)
vegetated land. Plots are averaged in the period from 2000
to 2007.
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emission, since AOD includes aerosols transported from
other source regions.
[26] We also compared the modeled dust AOD with

the AERONET database (Figure 12). We selected coarse
mode AOD from AERONET since it is mainly from dust.
AERONET sites are selected to cover deserts around the
world with good quality and temporal coverage (see Figure 4
for the location). Even though the dynamic source function
does not show a dramatic improvement in the AERONET
comparison, the new dynamic source function show some
improvement of the AOD in group II including Australian,
Indian, and Sahel region which are shown in the first two
columns. Especially at the Tinga Tingana station in
Australia, the correlation coefficient is improved from 0.22
to 0.64 and the relative mean bias is improved from 0.81
to 1.04 than the static source function. But the impact of
the dynamic source function to other desert stations (third
and fourth columns) is negligibly small or negative.
[27] The global distributions of the absolute and relative

errors of the two simulations are plotted in January and July
(Figures 13a and b). Dust optical depth (DOD) by dynamic
source function is 0.02 larger than the static source function

in Arabian, Central Asia, and India in July. In Taklimakan
desert, DOD by dynamic source function is about 0.5 lower
than the static source function in July. The absolute error
between two is less than �0.05 in most area for two seasons
and their global mean difference is less than 2%. Even
though the absolute error of DOD is not large, the relative
difference between the two simulations is large in both
January and July (Figures 13c and d). There are �20%
differences between two simulations not only in source
regions but also their downwind area. The relative difference
is more extended and larger in July than January. In summer
(i.e., July in the Northern Hemisphere and January in
Southern Hemisphere), the dynamic source function is larger
than the static source function in most source regions except
for Chotts and China.

5. Discussion

[28] In this study we choose a single NDVI threshold
value of 0.15 globally to determine if the surface is bare or
not. However, currently there are no available best estimates
on the spatially varying threshold NDVI. A sensitivity test

Figure 10. Mean aerosol optical depth map in various source regions in different seasons averaged from
2000 to 2007.
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using different threshold NDVI from 0.12 to 0.18 showed a
linear relationship between the decrease of threshold NDVI
and the increase of percentage bareness (e.g., if threshold
NDVI is 0.12, B is increased approximately by 30%). There-
fore, further investigation is needed to develop a region-
dependent threshold NDVI.
[29] While NDVI identifies bare ground using spectrally

dependent light absorption on leaf surface, NDVI itself
cannot distinguish the surfaces covered by stem or dead
plants from bare ground, therefore it could falsely identify
them as bare land in this study. Some previous studies
introduced some methods to include the seasonality of
land with stem or dead plant [Tegen et al., 2002; Fairlie
et al., 2007; Okin, 2008], however it remains difficult to
quantify their coverage. The inability in detecting soil
type, vegetation type by NDVI itself is another limiting
factor. These limitation need to be improved in future
study.
[30] The present study has shown impacts of the dy-

namic source function on dust emission even in coarser
resolution of 1��1�. It suggests that developing a dynamic
source function with higher spatial resolution can be more
beneficial for dust simulation, considering the high hetero-
geneity of the vegetation within the 1��1� area. Such
higher spatial resolution dust source function can be
constructed with the current 8 km AVHRR NDVI data or

with the finer resolution of the MODIS NDVI (e.g., 250
or 500m resolution), which is available from 2000 to
present, and will be easily applicable for finer resolution
global- or regional-scale models that are widely used for
air quality and aerosol transport studies.
[31] The use of Sdynamic and Sstatic in model simulated dust

AOD shows noticeable differences in and near source
regions especially in the group II, where simulated AOD
using Sdynamic is up to a factor of two higher than that using
Sstatic with significantly improved statistics. On the other
hand, global mean dust AOD values from dynamic and
static source function are rather similar. This is mainly due
to the fact that most dust is emitted in the group I source
regions including Sahara desert, which are mostly perma-
nent deserts with NDVI almost always below the threshold
value, such that the Sdynamic and Sstatic are very similar over
those dust source regions (Figure 3). Although the differ-
ences between using Sdynamic and Sstatic over group I and
group III desert areas seem very small for the time period
studied in this work, the NDVI-based Sdynamic is able to take
into consideration of the change of dust source location and
area due to the changes of land use and land cover. We have
estimated that 88% of dust emission is from the bare land
and 12% from vegetated area (e.g., grassland and agricul-
ture land), implying an application of using the NDVI-based
approach to develop future dust source scenarios based on

Figure 11. Time series of monthly mean AOD from dynamic (red) and static (blue) source functions,
MODIS Deep Blue (black solid line), and MISR (black dotted line). On each panel, R = correlation
coefficient, and B= relative mean bias, i.e., Σ(GOCARTi)/Σ(AERONETi).
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the projections of future land cover and land use change
deduced from the change of climate and human activity
scenarios.

6. Summary

[32] We have developed a global dynamic source function
for estimating dust emissions using a time-resolved surface
bareness derived from the AVHRR NDVI. The 15 day
surface bareness from 1981 to 2007 at 1��1� resolution is
calculated as the ratio of the number of 8 km NDVI that is
below 0.15 to the total number of 8 km NDVI pixels with
the 1��1� grid cell. The new dynamic surface bareness,
together with the surface topographic depression feature
and other surface characteristics (i.e., land cover type, soil
depth, soil temperature, snow cover) are used to produce a
time-dependent dust source functions to calculate dust
emissions in the GOCART model.
[33] We have analyzed the factors that determine the

seasonal variation and magnitude of Sdynamic over 22 dust
source regions over the globe. We have found that these
regions can be divided into three groups in terms of the
characteristics of surface bareness B and the degree of topo-
graphic depression H: (I) permanent deserts where NDVI is
almost always below 0.15, resulting in little seasonal varia-
tions of Sdynamic (e.g., Bodélé and Chotts), (II) seasonal
deserts where NDVI has large seasonality and H is high,
resulting significant seasonal variations of Sdynamic (e.g.,
Thar, Somalia, and Sahel), and (III) deserts with a low

degree of topographic depression H where the large seasonal
variation of NDVI has little influence on Sdynamic (e.g.,
Mexico and Namibia).
[34] We conducted two simulations with Sdynamic and

Sstatic, respectively, from 2000 to 2007 with the GOCART
model to test the impact of the Sdynamic on dust emission
and distribution in the model. The model results have in-
dicated that the dust emission calculated with Sdynamic
can be a factor of two different from that calculated with
Sstatic in some seasons over the group II dust source
regions, such as Thar desert, Lake Eyre, Somalia, and
Karakum deserts, while it has smaller effects on group
I and III deserts. Evaluation of modeled AOD with
remote sensing data from MISR, MODIS Deep Blue,
and AERONET has shown significantly higher correla-
tion coefficients and lower biases of model calculated
AOD with Sdynamic compared to that with Sstatic over
group II regions and, to some less extent, over group I
regions, while no improvements over group III regions.
On the global average scale, the AOD from Sdynamic
and Sstatic are very similar.
[35] With the dust emission calculated from Sdynamic, we

have estimated that globally 88% of dust is emitted from
the bare land. Although the vegetated land, such as grassland
and crop area, is a minor source of dust emission (12%), they
are most susceptible to the change of human activities and
climate. Therefore, using the NDVI-based technique may
develop a projection of future dust emission from the land
cover and land use change scenarios.

Figure 12. Time series of monthly mean AOD with dynamic (red) and static (blue) source functions
compared with AERONET (black). On each panel, R = correlation coefficient, and B= relative mean bias,
i.e., Σ(GOCARTi)/Σ(AERONETi).
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